CONJUGATE PERMUTATIONS IN A_{n}

ZHIPING XU

Abstract

We know that two permutations in S_{n} are conjugate if and only if their decompositions consist of the same cycle type. And a conjugacy class in S_{n} of even permutations is either equal to a single conjugacy class in A_{n}, or splits into two conjugacy classes in A_{n}. So two even permutations of the same cycle type may not be conjugate in A_{n}. In this article we introduce a simple and practicable criterion for determining whether two even permutations are conjugate in A_{n}.

For convience, we assume that all permutations here have already been decomposed into disjoint cycles.
Let a and b be two conjugate even permutations in S_{n}, then we can easily compute a permutation $\tau \in S_{n}$ such that $\tau a \tau^{-1}=b$. Let σ be another permutation (σ may equal to τ) such that $\sigma a \sigma^{-1}=b$, then $\tau^{-1} \sigma a \sigma^{-1} \tau=a$, which means $\tau^{-1} \sigma \in \operatorname{Stab}_{S_{n}}(a)$. Then $\sigma \in \tau \operatorname{Stab}_{S_{n}}(a)$, which means that any σ satisfy $\sigma a \sigma^{-1}=b$ if and only if $\sigma \in \tau \operatorname{Stab}_{S_{n}}(a)$.

We observe that if $\operatorname{Stab}_{S_{n}}(a)$ contains of both odd and even permutations, then there exists an element π of $\operatorname{Stab}_{S_{n}}(a)$ such that $\sigma=\tau \pi$ is even, which implies a and b are conjugate in A_{n}. And since (1) is in $\operatorname{Stab}_{S_{n}}(a)$, if all elements of $\operatorname{Stab}_{S_{n}}(a)$ have the same parity, then $\operatorname{Stab}_{S_{n}}(a)$ consists of only even permutations, hence τ and σ have the same parity. So in this case a and b are cocnjugate if and only if τ is even.

First we claim that:
Theorem 1. If the number of distinct integers in a is less than $n-1$, then a and b are conjugate in A_{n}.
Proof. Since a and b are conjugate in S_{n}, then there exists an permutation $\tau \in S_{n}$ such that $\tau a \tau^{-1}=a$. By hypothesis, we have at least two distinct integers not in a, say p and q. then $\sigma=\tau(p q)$ has different parity with τ and $\sigma \in \operatorname{Stab}_{S_{n}}(a)$. Hence proves our theorem.
Lemma 2. If the number of distinct integers in a is greater than or equal to $n-1$, then all permutations in Stab $_{S_{n}}(a)$ are even if and only if a consists of cycles of distinct odd length.
Proof. Let a consists of cycles of distinct odd length, say $a=\left(s_{0}, s_{1}, \ldots, s_{s-1}\right)\left(t_{0}, t_{1}, \ldots, t_{t-1}\right) \cdots\left(q_{0}, q_{1}, \ldots\right.$, $\left.q_{q-1}\right)$, where s, t, \ldots, q are distinct odd integers. If $\sigma \in \operatorname{Stab}_{S_{n}}(a)$, namely $\sigma a \sigma^{-1}=a$, then $\sigma\left(s_{0}, s_{1}, \ldots, s_{s-1}\right)$ $\sigma^{-1}=\left(s_{0}, s_{1}, \ldots, s_{s-1}\right)$. This means the effect of σ acting on $\left(s_{0}, s_{1}, \ldots, s_{s-1}\right)$ is "pushing forward" each integer x steps in the cycle, namely $s_{i} \mapsto s_{i+x}$, where $0 \leq x \leq s-1$, and all subscripts are taken modulo s.

When only considering $\left(s_{0}, s_{1}, \ldots, s_{s-1}\right)$, we may assume without loss of generality that σ consists of integers in $\left(s_{0}, s_{1}, \ldots, s_{s-1}\right)$. Then σ consists of cycles of the same odd length (e.g. when $x \mid s$, $\left.\sigma=\left(s_{0}, s_{x}, \ldots, s_{(k-1) x}\right)\left(s_{1}, s_{1+x}, \ldots, s_{1+(k-1) x}\right) \cdots\left(s_{x-1}, s_{2 x-1}, \ldots, s_{k x-1}\right)\right)$, which means σ is even. The effect of σ acting on other cycles follows in the same fashion. So σ consists of multiple such permutations and no other cycles of length greater than 1 can be added to this permutation since there is at most one integer unused. Hence σ is even.

For the converse, it is equivalent to say that if a doesn't consist of cycles of distinct odd length, then there exists at least one odd permutation in $\operatorname{Stab}_{S_{n}}(a)$. There are two cases.

- If $\left(p_{0}, p_{1}, \ldots, p_{p-1}\right)$ is a cycle of even length in a, then $\sigma=\left(p_{0}, p_{1}, \ldots, p_{p-1}\right)$ is an odd permutation such that $\sigma a \sigma^{-1}=a$.
- If $\left(e_{0}, e_{1}, \ldots, e_{m-1}\right)$ and $\left(f_{0}, f_{1}, \ldots, f_{m-1}\right)$ are two cycles of the same odd length in a, then $\sigma=$ $\left(e_{0}, f_{0}\right)\left(e_{1}, f_{1}\right) \cdots\left(e_{m-1}, f_{m-1}\right)$ is the desired odd permutation such that $\sigma a \sigma^{-1}=a$.

Hence we've proved:
Theorem 3. Let a and b be two conjugate even permutations in S_{n} and τ any permutation such that $\tau a \tau^{-1}=b$. Then a and b aren't conjugate in A_{n} if and only if the number of distinct integers in a is greater than or equal to $n-1, \tau$ is odd, and if a consists of cycles of distinct odd length.

E-mail address: 2h1p1n9.xu@gmail.com
School of Mathematical Science, Shanxi University, Taiyuan 030006, PR China

